Canary Replica Feedback for Near-DRV Standby VDD Scaling in a 90nm SRAM

نویسندگان

  • Jiajing Wang
  • Benton H. Calhoun
چکیده

Canary bitcells act as online monitors in a feedback architecture to sense the proximity to the Data Retention Voltage (DRV) for core SRAM bitcells during standby voltage scaling. This approach implements aggressive standby VDD scaling by tracking PVT variations and gives the flexibility to tradeoff between the safety of data and decreased leakage power. A 90nm 128Kb SRAM test chip confirms that the canary cells track changes in temperature and VDD and that they provide a reliable mechanism for protecting core cells in a closed loop VDD scaling system. Power savings improve by up to 30× compared with the conventional guard-banding approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Voltage SRAMs with Adequate Stability in Nanoscaled CMOS

Increased leakage current and device variability are the major challenges with CMOS technology scaling. Since Static Random Accessed Memory (SRAM) is often the largest component in the embedded digital systems or System-on-Chip (SoC), it is more vulnerable to those challenges. To effectively reduce SRAM leakage and/or active power, supply voltage (VDD) is often scaled down during standby and/or...

متن کامل

Deep Sub-Micron SRAM Design for Ultra-Low Leakage Standby Operation

Deep Sub-Micron SRAM Design for Ultra-Low Leakage Standby Operation by Huifang Qin Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences University of California, Berkeley Professor Jan M. Rabaey, Chair Suppressing the standby current in memories is critical in low-power design. By lowering the supply voltage (VDD) to its standby limit, the data retention voltage (DRV...

متن کامل

Techniques to Extend Canary-Based Standby Scaling for SRAMs to 45 nm and Beyond

scaling is an efficient technique to reduce SRAM leakage power during standby mode. The data retention voltage (DRV) defines the minimum that can be applied to an SRAM cell without losing data. The conventional worst-case guard-banding approach selects a fixed standby supply voltage at design time to accommodate the variability of DRV, which sacrifices potential power savings for non-worst-case...

متن کامل

Standby supply voltage minimization for deep sub-micron SRAM

Suppressing the leakage current in memories is critical in low-power design. By reducing the standby supply voltage (VDD) to its limit, which is the data retention voltage (DRV), leakage power can be substantially reduced. This paper models the DRV of a standard low leakage SRAM module as a function of process and design parameters, and analyzes the SRAM cell stability when VDD approaches DRV. ...

متن کامل

SRAM Cell Optimization for Ultra-Low Power Standby

This paper proposes a comprehensive SRAM cell optimization scheme that minimizes leakage power under ultra-low standby supply voltage (VDD). The theoretical limit of data retention voltage (DRV), the minimum VDD that preserves the states of a memory cell, was derived to be 50 mV for an industrial 90 nm technology. A DRV design model was developed on parameters including body bias, sizing, and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007